当前位置:首页 > 文章中心>MIT大学学术诚信——引用常识

MIT大学学术诚信——引用常识

发布时间:2021-09-11 10:52:27 阅读:35 作者:致远教育 字数:2013 字 预计阅读时间:6分钟
导读:MIT大学学术诚信关于常识的文章,介绍了常识的定义和归类,给出了确定一条信息是否为常识的方法,什么情况下可以认定为不是常识,并给出了一些属于常识和非常识的具体的例子。当你(论文中)所包含的信息是“常识”时,你不必引用你的来源,但是什么是常识呢?

MIT大学学术诚信关于常识的文章,介绍了常识的定义和归类,给出了确定一条信息是否为常识的方法,什么情况下可以认定为不是常识,并给出了一些属于常识和非常识的具体的例子。该文尤其指出,一些信息是相对的,对一些读者是常识,而对另外一些读者则不是常识。据此该文强调,(为了避免被视为剽窃)对于自己不确定是否为常数的信息,应按非常识引用。本文是原文的翻译,为了不丢失原意,每段翻译附上原文。——编者

MIT大学校园

你可能听过有人说,当你(论文中)所包含的信息是“常识”时,你不必引用你的来源,但是什么是常识呢?

You may have heard people say that you do not have to cite your source when the information you include is “common knowledge.” But what is common knowledge? 

广义地说,常识是指普通受过教育的读者不必查找就可以接受的可靠信息。这包括以下四种情况:

Broadly speaking, common knowledge refers to information that the average, educated reader would accept as reliable without having to look it up. This includes: 

    1.大多数人都知道的信息,比如水在华氏32度(零摄氏度)结冰,或者巴拉克 奥巴马是第一位当选(美国)总统的混血美国人。

    Information that most people know, such as that water freezes at 32 degrees Fahrenheit or that Barack Obama was the first American of mixed race to be elected president. 

    2.一个文化或民族团体共享的信息,如一个国家历史上著名的英雄或事件的名字。

    Information shared by a cultural or national group, such as the names of famous heroes or events in the nation’s history that are remembered and celebrated.

    3.由某一领域的成员共享的知识,如晶体固体的波长辐射衍射的必要条件是由布拉格定律给出的。

    Knowledge shared by members of a certain field, such as the fact that the necessary condition for diffraction of radiation of wavelength from a crystalline solid is given by Bragg’s law.

    4.然而,在一种文化、民族、学科或同龄人群体中可能是常识的东西,在另一种文化、民族、学术学科或同龄人群体中可能不是常识。

    However, what may be common knowledge in one culture, nation, academic discipline or peer group may not be common knowledge in another.

如何确定我使用的信息是否是常识?

How do I determine if the information I am using is common knowledge?

为了帮助您决定信息是否可以被视为常识,可问自己以下三个问题:

To help you decide whether information can be considered common knowledge, ask yourself: 

1.谁是我的听众或读者?Who is my audience? 

2.我能假设他们已经知道了什么?What can I assume they already know?

3.我会被问到我从哪里得到的信息吗?Will I be asked where I obtained my information? 

下面给出三个例子:Some examples:

1).对阿斯伯格综合症症状的描述需要在一般的写作课上被引用,但对于心理学研究生的读者来说,可能不需要引用。

A description of the symptoms of Asperger’s Syndrome would need to be cited for a composition in a general writing class but probably not need citation for an audience of graduate students in psychology.

2).一组经济学家会理解一篇关于公允价值会计实践的参考文献,但面向非专家听众时需要引用。

A reference to the practice of fair value accounting would be understood by a group of economists, but would need citation to an audience of non-experts.

3).声称24%的18岁以下小孩是由单生母亲照顾时,需要引用文献,因为对于具有平均水平的读者,他们想知道数字是从哪里获得的。

A statement reporting that 24% of children under the age of 18 live in   households headed by single mothers would need to be cited.  This is information that would not be known to the average reader, who would want to know where the figure was obtained.

最好的建议是:当有疑问时,引用你的消息来源。The best advice is: When in doubt, cite your source.

MIT大学教学楼

以下哪项陈述可以被视为常识?哪些需要引用参考文献?

Which of the following statements would be considered common knowledge?  Which would need to be cited?

1.大爆炸理论假设宇宙在数十亿年前从一次巨大的爆炸开始。

The Big Bang theory posits that the universe began billions of years ago with an enormous explosion.

2.“大爆炸”这个词是由英国天文学家弗雷德·霍伊尔爵士发明的。霍伊尔(本来)用这个词来嘲弄这个他不同意的理论。

The phrase “Big Bang” was coined by Sir Fred Hoyle, an English astronomer.  Hoyle used the term to mock the theory, which he disagreed with. 

3.根据大爆炸模型,最初的爆炸是在一个无限热的稠密中心开始膨胀,产生最终形成我们的宇宙的粒子时产生的。

According to the Big Bang model, the initial explosion was produced when an infinitely hot, dense center referred to as a singularity, began to expand, giving rise to the particles that eventually formed into our universe.

声明#1是常识——大爆炸理论在科学家中被广泛接受,这个术语经常在日常用语中使用。

Statement #1 is common knowledge – the Big Bang theory is widely accepted among scientists and the term is used regularly in everyday speech. 

声明#2不能当常识,需要引用文献——这个信息非常具体,甚至可能是一些物理学家所不知道的。

Statement #2 needs citation; this information is very specific and may even be unknown to some physicists.

声明#3对物理界的学生读者不需要引用,但需要在论文中为非专家读者引用。

Statement #3 would not need citation to an audience of physics students but would need citation in a paper for a non-expert audience.

MIT大学写作常识

什么不是常识?

What is not Common Knowledge

1.由您或其他人生成的数据集。Datasets generated by you or others.

2.来自诸如美国人口普查局和劳工统计局等来源的统计数据。Statistics obtained from sources such as the US Census Bureau and the Bureau of Labor Statistics.

3.他人所做的研究的参考文献。References to studies done by others.

4.使用特定日期、数字或事实时,除非读者参与了研究,否则读者是不会知道的,从而不能当做常识。Reference to specific dates, numbers, or facts the reader would not know unless s/he had done the research.

需要引用的三个陈述例子-每一个都是指其他人所做的工作、统计数据或一般读者不知道的具体信息:

Examples of statements that need citation - each refers to work done by others, statistics, or specific information that would not be known by the average reader:

1 研究人员发现,用于清理石油泄漏的分散剂,当空气中这些分散剂的颗粒与原油结合并被吸入时,会导致肺损伤。

Researchers have found that dispersants utilized to clean up oil spills can lead to lung damage when airborne particles of these dispersants combine with crude oil and are inhaled.

(Source: Wang, H., Shi, YL, Major, D. and Yang, HL (2012, August).  Lung epithelial cell death induced by oil-dispersant mixtures. Toxicology in Vitro, 26, 5, 746-751.  doi: 10.1016/j.tiv.2012.03.011)

2 布鲁金斯研究所(Brookings Institute)学者最近进行的一项研究发现,2000年至2010年,美国贫困人口增加了1230万,因此到2010年底,15%的人口生活在贫困线以下。

A recent study done by scholars at the Brookings Institute found that the number of people living in poverty in America grew by 12.3 million between 2000 and 2010, so that by the end of 2010, 15% of the population was living under the poverty line. 

(Source:  Kneebone, E., C. Nadeau and Berube, A.  (2011, November 3).  The re-emergence of concentrated poverty:  metropolitan trends in the 2000s.  Brookings Metropolitan Opportunity Series. Retrieved from http://www.brookings.edu/research/papers/2011/11/03-poverty-kneebone-nadeau-berube.)

3 不同聚合度的二元聚合物共混物的每个位置的混合能量可以用Flory-Huggins方程来描述。

The energy of mixing per site for a binary polymer blend with differing degrees of polymerization can be described through the Flory-Huggins equation.

(Source:  Flory, P.J. (1953).  Principles of Polymer Chemistry.  Ithaca, NY: Cornell University Press.)

注:这个方程式是大分子结构的热力学所特有的,并不是许多科学家或工程师的常识。基于这些原因,他们需要被引用。

Note: This equation is specific to the thermodynamics of macromolecular structures and would not be considered common knowledge by many scientists or engineers. For these reasons, they need to be cited.

我要评论

评论内容:

验证码:
验证码